(Carnegie Mellon University

Helnz

95-865 Unstructured Data Analytics

Lecture 14: Wrap up RNNs; a glimpse of word
embeddings; start coverage on text generation

Slides by George H. Chen

(Flashback) Sentiment Analysis with IMDb Reviews
Step 1: Tokenize & build vocabulary

=8 Word index Word 2D Embedding
— 0 this [0.57,0.44]
= 1| movie (038,015
Training reviews 2 . rocks [085070]
3 sucks [-0.26, 0.66]

Step 2: Encode each review as a sequence of

Ordering of words word indices into the vocab

matters “this movie rocks” —> 012

Different reviews can “this movie sucks” —> 013

have different lengths ithis sucks” - 0 3

Step 3: Use word embeddings to represent each word

(Flashback) Sentiment Analysis with IMDb Reviews

Word index
— 0
= 1
Training reviews 2 ______________________
3

Step 1: Tokenize & build vocabulary

Word 2D Embedding

Step 2: Encode each

this [-0.57, 0.44]

sucks [-0.26, 0.66]

review as a sequence of

word indices into the vocab

1)

“this movie sucks

—> 013

Step 3: Use word embeddings to represent each word

-0.57, 0.44]
[0.38, 0.15]
[-0.26, 0.66]

(Flashback) Do Data Actually Live on

Manifolds?

wuur pork
hour " bee eal
mrs e rodanicken
side gravy
cake
fi
caltmix keep vfat while fried
piﬁ mix potatcgijp
flour soft drignder madéhese s he corn
R good , b food their quart
roll into an PYwereg|| or pint
oven clean watt%r . are before pie
d en . fromofthe _this thef ton
wash dry until) hinan a is gbake baking
removs(imo“ heatlight Wh'gnwithwas S’Lofhat cream bohlng
day as .
o over when flavor cooking
your juice who whiteup oneé for to it her she yduazs taste
|d ready ul ire out atthem but o -
) hours ©0 ltihrough againfter first SOME hard just salad |
£ di ﬁe WhO'gave there another enough will ars eynu‘meg teaspoon
- pot ish each hasedone Jarate (pe ay quitmustcanwould part ﬁ%’ast?%%%" ﬁ"f“'
upon reughl only Vi
pan CO\:er SerVe,pymbs cadfiQP well" £ way no spoonful cupdiip
Quastl : i lemon like|ittle other cups
%%%nd Stlbodpms'ow'y pIaCQime ; hosdeing few togethemelted tablespoonfuls
strain take WEhou everygre:‘n any stock Mixture tWehreeunds
stew ounce very .
. at ' aste six
minufeR! OUNEES setableisq, e ot any th S about * ten”"five
Sstand should an . fo%enly
cook choppgéeraaion largesmall bestyse m%anwﬂ’nuch
3 - fruit new peaten half PieCgze
acdg . wine thick
sauce e hin ..Ut roundlay ..
cheese milk Jelly thin pieces
bread .. mMeat :
rice green cooked 32 ShC?nsch botdRP
yolks beat cak@éxed
whites more
brown peel
pudding
bake
%oﬁed sweet tcoﬂee
- ea

-100

Image source: http://www.adityathakker.com/wp-content/uploads/2017/06/word-

embeddings-994x675.png

onion

Sentiment Analysis with IMDb Reviews

“this movie sucks”

013 —

[-0.57, 0.44]
[0.38, 0.15]
[-0.26, 0.66]

Embedding]

Sentiment Analysis with IMDb Reviews

o)
-
r®) [-0.57, 0.44]
0 —»|o >
)
O
=
LLl
“this movie sucks” @
e 10.38, 0.15]
1 —» | >
)
O
=
LLl
a0l
-
e [-0.26, 0.66]
3 —»|© >
)
O
=
LL]

Sentiment Analysis with IMDb Reviews

-0.57, 0.44]

0O —»

7| [Embedding|
\/

“this movie sucks” éﬁ .

© [0.38, 0.15] - :

1 —» | o » : >
v : :
o : .
= : /
LIJ | |
60| ; ;
(-
o| [-0.26,0.66] :

3 —»|© > . >
q) | |
o
=
LL]

RNN layer

Sentiment Analysis with IMDb Reviews

00|

-

I [-0.57, 0.44]

0 —»|©T >

O

o

=

LL]

“this movie sucks” @

<| [0.38,0.15]

P : We only keep the last
= v ,

L time step's output
a0l

- o

© [-0.26, 0.66] - : =

3 —»|T > . > | O |—>

g | | LU

= O

LL]

RN\Iayer

Sentiment Analysis with IMDb Reviews

'--

._Each "layer” in orange

RN

» dotted box corresponds

to an iteration of the

layers share the same

' RNN's for loop & these
parameters!

Sentiment Analysis with IMDb Reviews

._Each "layer” in orange

o)
> : , dotted box corresponds
o [-0.57,0.44] . ' to an iteration of the
O ' 8 > RNIN's for loop & these
= . layers share the same
— parameters!
“this movie sucks” @l / |
o| [0.38,0.15] :
] —» T > : ;
@ : :
o
=
LL]
a0l
- o
O [-0.26, 0.66] - : =
3 —»|T > . > | O |—>
j2 ' ' ©
= O
LL]
RNN layer

Sentiment Analysis with IMDb Reviews

: ._Each “layer” in orange
» dotted box corresponds
[-0.57,0.44] . ' to an iteration of the
> ' RNN's for loop & these
: + layers share the same
parameters!

0,26, 0.66] /

> : >

0O —»

“this sucks”

3 —

Embedding| [Embedding|
Classifier

‘

RNN layer

RNNs work with variable-length inputs!

Note that the “RNN layer” here could refer to a vanilla ReLU RNN
or a more complicated RNN such as an “LSTM", “"GRU", etc

Note: Sometimes in text analysis, the word embeddings are treated as fixed,
so we do not update them during training

What if we didn’t use word embeddings?

Sentiment Analysis with IMDb Reviews

Step 1: Tokenize & build vocabulary

Word index
— 0
= 1
Training reviews 2 ______________________
3

Word 2D Embedding

Step 2: Encode each

____________ this [057,044]
_________ movie 038, 0.15]
rocks [-0.85, 0.70]

sucks [-0.26, 0.66]

review as a sequence of

word indices into the vocab

1)

“this movie sucks

—> 013

Step 3: Use word embeddings to represent each word

-0.57, 0.44]
[0.38, 0.15]
[-0.26, 0.66]

Bad Strategy: One-Hot Encoding

Step 1: Tokenize & build vocabulary

= Word index Word One-hot encoding
— 0 this 1,0,0,0
W= T movie 01,00
Training reviews 2 rocks | 0,0,1,00
3 sucks 0,00, 1

Step 2: Encode each review as a sequence of
word indices into the vocab

“this movie sucks” —> 013

Step 3: Use one-hot encoding to represent each word

This strategy tends to work poorly in practice: 1,0,0,0]
distance between every pair of words is the same 0, 1,0, O]
in one-hot encoding! 0,0,0, 1

Recap/Important Reminder

* Neural nets are not doing magic; incorporating structure is very
important to state-of-the-art deep learning systems

e Word embeddings encode semantic structure—words with
similar meaning are mapped to nearby Euclidean points

e CNNs encode semantic structure for images—images that are
“similar” are mapped to nearby Euclidean points

e An RNN tracks how what's stored in memory changes over time —
an RNN'’s job is made easier if the memory is a semantically
meaningful representation

A briet glimpse at word embeddings

We used spaCy/CountVectorizer/
TfidfVectorizer
Either TF
“learn” —| |—» or TF-IDF —»
vector
Either TF
“study” —| [—> orTF-IDF —>
vector
Either TF
"car’'" ——»| |[—» or ITF-IDF —»
vector

PCA
(e.g., 100-dim)

100-dim
PCA vector

100-dim
PCA vector

100-dim
PCA vector

Tokens/words

“learn”

1 1

study

1 1)

car

—

—

Neural net model

— word embedding

— word embedding

— word embedding

Word Embeddings:

Even without labels, we can set up
a prediction problem!

Hide part of training data and try to predict what you've hid!

This is commonly referred to as self-supervised learning

Word Embeddings: word2vec (2013)

Can solve tasks like the tollowing:

Manis to Kingas Womanisto 2?7?27

Word Embeddings: word2vec (2013)

Can solve tasks like the tollowing:

Man is to King as Woman is to

Word Embeddings: word2vec (2013)

Can solve tasks like the tollowing:

Man is to King as Woman is to

Which word doesn't belong?
blue, red, green, crimson, transparent

Word Embeddings: word2vec (2013)

Can solve tasks like the tollowing:

Man is to King as Woman is to

Which word doesn't belong?
blue, red, green, crimson,

Word Embeddings: word2vec (2013)

Country and Capital Vectors Projected by PCA

2 1 I 1 1 1 1 |

China
Beijing
1.5 Russia 1
Japan
Moscow
1 L a4
Turkey Ankara *Tokyo
05 F il
Poland

0 Germany -

France Warsaw

 »Berlin
-0.5 | Italy Paris -

< Athens

Greece:
1 Spain Rome a4
' Madrid i
-1.5 | Portugal e

_2 1 1 1 1 1 1 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Image source: https://deeplearningdj.org/img/countries_capitals.png

Word Embeddings: word2vec (2013)

prescription and non-prescription opioid drugs in the United States and
Canada in the 2010s.

Predict context of each word!

Training data point: epidemic

“Training labels”: the, opioid, or, opioid

Word Embeddings: word2vec (2013)

.......... NN

The ‘opioid epidemicioriopioid crisisiis the rapid increase in the use of

prescription and non-prescription opioid drugs in the United States and
Canada in the 2010s.

Predict context of each word!

Training data point: or

“Training labels”: opioid, epidemic, opioid, crisis

Word Embeddings: word2vec (2013)

i K NN

The opioid:epidemic or::oﬁioid:-"crisis isithe rapid increase in the use of

prescription and non-prescription opioid drugs in the United States and
Canada in the 2010s.

Predict context of each word!

These are "positive” (correct)

Training data point: opioid / eﬁg;glejrjf(\;vrh’i;i%?;e”Xt

“Training labels”: epidemic, or, crisis, is

Also provide “negative” examples of words that are not likely to be context
words (by randomly sampling words elsewhere in document)

Word Embeddings: word2vec (2013)

e NN

The opioid:epidemic or"-'oﬁioid}:crisis isithe rapid increase in the use of

o ™= m = m

)}

in the:2010s:
Canada in the:2010s randomly sampled word

Predict context of each word!

Training data point: opioid

“Negative training label”: 2010s

Also provide “negative” examples of words that are not likely to be context
words (by randomly sampling words elsewhere in document)

Word2vec Neural Net

“opioid” Want real context
Use one-hot encoding words (e.g.,
0,0, ...,1, ..., 0] > » > "epidemic”, "crisis”)

to have high

vector length] = vocab size orobability

index of “opioid” in vocab

Linear, no bias vector Linear
((100 nodes) (# nodes = vocab size),

Learned weight matrix used ~ Softmax

as word embedding!

(Treat i-th col of weight matrix as word embedding for i-th word)

Word2vec Neural Net

After training the word2vec

model, treat this layer as fixed!

"opioid” .
Use one-hot encoding =
0,0,...,1, ..., Q] > < S
O
vector length| = vocab size 5 In PyTorch, can store already

trained word2vec model (and
other similar models like GloVe)

index of “opioid” in vocab

in the Embedding layer

(100 nodes)

Learned weight matrix used

(Linear, no bias vector

as word embedding!

(Treat i-th col of weight matrix as word embedding for i-th word)

Tokens/words

11 11

pen

cat”

“health”

word2vec

v
Embedding

» word embedding

v
Embedding

» word embedding

v
Embedding

» word embedding

Tokens/words word2vec

11 11

pen >

» word embedding

Embedding

Even though “pen” has multiple meanings
(e.g., what you write with vs a play pen),
word2vec would produce the same word embedding for “pen”

(Flashback)

What about a word that has
multiple meanings?

Challenging: try to split up word into
multiple words depending on meaning
(requires inferring meaning from context)

Modern Word Embeddings Use Context

(such as BERT, which came out in 2018)

‘1" > » word embedding
“write” > » word embedding
“using” > » word embedding

"a" > » word embedding
"pen” > » word embedding

You provide a More complicated neural ~ Time-permitting, we'll talk
whole slentence net (compared to more about high level ideas
(or a longer applying Embedding of what happens in this

document) separately to each word) neural net later this week

(Flashback) Sentiment Analysis with IMDb Reviews

._Each "layer” in orange

ol
> : , dotted box corresponds
- [-0.57, 0.44] . ' to an iteration of the
0 b > ' RNN's for loop & these
= . layers share the same
- parameters!
“this movie sucks” @l /
o| 038,015 :
| —» | > :
D) " !
o
=
LL]
a0l
- o
© [-0.26, 0.66] - : =
3 —»|T > : >| 2| —>
j2 ' ' ©
= O
L]
RNN layer

What the Demo Will Actually Do

0O —»

128-dim
word
embedding

“this movie sucks”

1 —>

._Each "layer” in orange
» dotted box corresponds
to an iteration of the

' RNN's for loop & these
+ layers share the same

parameters!

The original BERT base model from
2018 is very large (110M parameters
with 768-dim word embeddings)

We'll use Google's BERT-Ti
model (a version ported to

Hugging Face)
|

iny

BERT-Tiny

Classifier

We do not store these embeddings and will instead compute them as needed
(they depend on context anyways when using BERT/BERT-Tiny!)

UVIIHIIIIVIIH'\IIUIJUIU VyVvilwill I8 VE D N 1 A\ V¥V I N\w VV &5

] .
] >
1 ' 1
| i 4
In the demo, use the |~ '___. ___ T . _____________ !
vocabulary from a pre- : 1 movie || ’4
trained BERT-Tiny S . N :
; 2 rocks i [-GF N
IMaTmmTrTy TCVIT VS g e ;] v o, :
BERT/BERT-Tiny uses 5 3 sucks 1,

tokens that can be smaller
than a word (specifically, Step 2: Encode each review as a sequence of

unknown words get split
into subwords)

Each token represented as a 128-dim BERT-Tiny
word embedding

Variable-Length Time Series in PyTorch

In PyTorch, how do we specity a batch of time series of varying lengths?

Common way: g|ve a 2D table with all time series padded to the max Iength,,

/ -------------------------------’

and also give a:1D table specifying the lengthsi—__

Example: 5 data points (each one is a time series) of lengths 3, 2, 5, 1, 7

Data point

IIII= 3,2,51,7]

. Blue entries contain actual

. . values from the 5 time series
Time steps . . Gray entries contain
. . padded values (e.q., zeros)

. This shows up in the demo when
we specify an example input to

v . the neural net

Sentiment Analysis with IMDb Reviews Demo

The next series of slides provide a “cheatsheet” explaining
what the sentiment analysis demo is doing

| will not go over the demo in detail in class and will expect you to read it fully
(I will go over the cheatsheet with you)

The demo does not use a vanilla ReLU RNN and instead uses an LSTM
(you are not expected to know details of what's under the hood for an LSTM)

Sentiment Analysis Demo Cheatsheet

list of length-2 tuples

Impc;rtf'ant: we do not build a vgcalbularygrcim | cach containing
scratch since we just use BERT-Tiny's vocabulary! (review, label 0 or 1)
1. Load in training data (25000 IMDb reviews) trai n_dataset)
2. Do a 80/20 split of the training data into:
- proper training data (20000 reviews) proper train dataset
- validation data (5000 reviews) val dataset

3. Convert each proper training review into token IDs using
BERT-Tiny's encode method

"Master cinéaste Alain Resnais likes to work with those actors

l

['master', 'ci' "#iteas ', '##te", 'alain', 'res', '##nais',

9

'likes', 'to', 'work', 'with', 'those', 'actors']

l

[3040, 25022, 26737, 2618, 15654, 24501, 28020, /7777,
2000, 2147, 2007, 2216, 5889]

list of length-2 tuples

Impc;rtgnt: we cjo not build a vgcalbularygr?m | each containing
scratch since we just use BERT-Tiny's vocabulary! (review, label 0 or 1)
1. Load in training data (25000 IMDb reviews) trai n_dataset)
2. Do a 80/20 split of the training data into:
- proper training data (20000 reviews) proper_train_dataset
- validation data (5000 reviews) val dataset

3. Convert each proper training review into token IDs using
BERT-Tiny's encode method

"Master cinéaste Alain Resnais likes to work with those actors

l

['master', 'ci' '#iteas ', '##te", 'alain', 'res', '##nais',

9

'likes', 'to', 'work', 'with', 'those', 'actors']

l

[3040, 25022, 26737, 2618, 15654, 24501, 28020, /7777,
2000, 2147, 2007, 2216, 5889]

proper train dataset encoded — *list of length-2 tuples each containing

¥ (encoded review, label 0 or 1)

val dataset encoded —

proper train dataset encoded — *list of length-2 tuples each containing

~_» (encoded review, label O or 1)

val dataset encoded —

4. Construct neural net (instead of nn. Sequential, we make a class
that inherits from nn.module)

PyTorch convention: the forward function specifies how a neural net
actually processes a batch of input data

Data point

Time steps

>

The neural net we constructed has a

for:gv_a_[(_j_fqnctlon with two inputs:
. -2 2D table!
L/(e_a_c_h column is for 1 data point)
! -+a 1D table

(specities length for each time series)

Blue entries contain actual
values from the 5 time series

Gray entries contain
padded values (e.qg., zeros)

Time steps

Data point

\ J

The neural net we constructed has a

4_/eachcolumn is for 1 data point)

-a 1D table:

(specifies length for each time series)

_h
O
o
>3
Q
m
(@3
_|ﬁ
-
3>
0O
gl
O
D)
2
(_|-
DN
(—|-
2
O
S
=6
-
(_|-
wn

Blue entries contain actual
values from the 5 time series

Gray entries contain
padded values (e.qg., zeros)

example where there are 5 input time series of lengths 3, 2, 5, 1, 7;
we specify these time series using a 2D table that is padded and a

1D table of lengths (see lecture slides for details)

summary(word embedding Lstm_linear model, o

Data types matter in PyTorch (torch.long means these tables store integers)

values rrom the o time series

Gray entries contain
padded values (e.g., zeros)

example where there are 5 input time series of lengths 3, 2, 5, 1, 7;
we specify these time series using a 2D table that is padded and a
1D table of lengths (see lecture slides for details)
summary (word_embedding_1lstm_linear_model, o
input_data=[torch.zeros((7, 5);f[f i¢%tdfC'f"““’;
torch.tensor([3, 2, 5, 1, 71

Data types matter in PyTorch (torch.long means these tables store integers)

5. Train the neural net for some user-specitied max number of epochs

6. Automatically tune on one hyperparameter:
choose # of epochs to be the one achieving highest validation accuracy

/. Load in the saved neural net from the best # of epochs

8. Finally load in test data, tokenize and convert each test review into
a list of integers, and use the trained neural net to predict

Two Demos

First demo (very short): How to use word embedding models from
Hugging Face's transformers package

Second demo (long): sentiment analysis demo
(again, please actually read it carefully including the comments after class)

Text generation as a
prediction problem

Just like the word2vec prediction problem:
we set up a self-supervised prediction problem

The opioid epidemic or opioid crisis is
the
prescri
drugsin t
the 2010s.

id increase in the use of

ion and non-prescription opioid
United States and Canada in

Let's treaf this string as a single data point (a time series of tokens)

For tokenization, let's split by indiviqual characters
(so no need to use spaCy)

}

Given ['T'], predict next character 'h'

The opioid epidemic or opioid crisis is
the ragid increase in the use of
prescription and non-prescription opioid
drugs in theNUnited States and Canada in
the 2010s.

Let's treat this string as a single data point (a time series of tokens)

For tokenizTation, let’s split by individual characters
(so no neeq to use spaCy)

Given ['T' \ oredict next character 'h'

Given ['T"', 'h'], predict next character 'e

The opioid epidemic or opioid crisis is
the rapid increase in the use of

prescription and non-prescription opioid
drugs in the Npited States and Canada in
the 2010s.

Let's treat this string as a single data [point (a time series of tokens)

For tokenization, let's split by individual characters
(so no need to use spaCy)

Given ['T'], bredict next character 'h'

Given ['T", \h'], predict next character 'e

Given ['T", 'h', 'e'l], predict next character

The opioid epidemic or opioid crisis is
increase in the use of

the rapi
prescriptionand non-prescription opioid
drugs in the Unjted States and Canada in
the 2010s.

Let's treat this|string as a single data p&int (a time series of tokens)

For tokenization, let's split by individual chaxacters
(so no need to|use spaCy)

Given ['T'], predict next character 'h'

Given ['T"', '"R'], predict next character 'e"

Given ['T", , 'e'], predict next character

Given ['T', 'h', 'e', ' '], predict next character 'o

The opioid epidemic or opioid crisis is
the rapid increase in the use of
prescription and non-prescription opioid
drugs in the United States and Canada in
the 2010s.

Let's treat this string as a single data point (a time series of tokens)

For tokenization, let's split by individual characters
(so no need to use spaCy)

Given ['T'], predict next character 'h'

Given ['T"', 'h'], predict next character 'e'

Given ['T', 'h', 'e'l], predict next character '
Given ['T", 'h', 'e', ' '], predict next character 'o'

It the string has L + 1 characters total, then there are L such prediction tasks

How to solve this prediction task with an RNN

We will now keep track of outputs at every time step of the RNN

(Previously for sentiment analysis, we only kept the output at the final time step)

Vocabulary

First, let's agree on a vocabulary to use
(e.g., pick the unique ones seen in the dataset)

vocabulary

array([l\nll l Il I"'l '$I' I%ll l&l' "I"I l(ll I)'l 'll' I—ll l'll l/ll
Iell Illl l2ll l3ll I4Il l5l’ I6Il I7II l8ll '9" l:ll I;I’ I?Il
IAII IBII 'Cl’ IDII IEI' IFI' IGII IHII IIII lJ.’ IK" ILI’ IMII
INII IOII lPl’ lRl’ ISII ITI' IUII IVII lwll lX" IY'I I[I’ I]Il
IAII 'a" lbll 'C'I Idll 'e" Ifll 'g', lhll lil’ 'jll Ikll I-Lll

m , nl' lol’ lpl’ lql’ Ir , ISI’ Itl’ lul’ lvl’ lwl' IXI' Iyl'
IZI’ Ill’ l_l’ l_l, lll' I'I' Illl' I"I]’ dtype=l<U1l)
len(vocabulary)

86
token_to_id = {token: idx for idx, token in enumerate(vocabulary)
def encode(s):

assert type(s) == str

return torch.tensor([token_to_id[character]| for character in s!, dtype=torch.long)

encode('The opi')

tensor([44, 60, 57, 1, 67, 68, 61])

RNN Language Model
(‘'r', 'h', ‘'e', "', o', 'p', "1']
length = L + 1

L = 6 in this example

Try to predict 'h'

Try to predict 'e’

Try to predict

Try to predict 'o

Try to predict 'p'

Try to predict ' i

Linear layer with softmax activation,

LI

-----'

e

>

|
|
|
|}

3ulppaqu3

3ulppaqul

3ulppaqu3

3ulppaqu3

3ulppaqul

3ulppaqu3

LA N

RNN Language Model

encode as
token ID

4
4

ITI

|

|

©)
o)

lhl

|

™~
LN

|

|

|

output nodes = vocab size

RNN layer

