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Lecture 14: Wrap up RNNs; a glimpse of word 
embeddings; start coverage on text generation



Word index Word 2D Embedding

0 this [-0.57, 0.44]

1 movie [0.38, 0.15]

2 rocks [-0.85, 0.70]

3 sucks [-0.26, 0.66]

(Flashback) Sentiment Analysis with IMDb Reviews

Training reviews

Step 1: Tokenize & build vocabulary

Step 2: Encode each review as a sequence of 
word indices into the vocab

Word index Word

0 this

1 movie

2 rocks

3 sucks

“this movie rocks”

“this movie sucks”

0 1 2

0 1 3

“this sucks” 0 3

Ordering of words 
matters

Different reviews can 
have different lengths

Step 3: Use word embeddings to represent each word



Word index Word 2D Embedding

0 this [-0.57, 0.44]

1 movie [0.38, 0.15]

2 rocks [-0.85, 0.70]

3 sucks [-0.26, 0.66]

(Flashback) Sentiment Analysis with IMDb Reviews

Training reviews

Step 1: Tokenize & build vocabulary

Step 2: Encode each review as a sequence of 
word indices into the vocab

Word index Word

0 this

1 movie

2 rocks

3 sucks

Step 3: Use word embeddings to represent each word

“this movie sucks”

[-0.57, 0.44] 
[0.38, 0.15] 
[-0.26, 0.66]

0 1 3



(Flashback) Do Data Actually Live on 
Manifolds?

Image source: http://www.adityathakker.com/wp-content/uploads/2017/06/word-
embeddings-994x675.png



Sentiment Analysis with IMDb Reviews
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Sentiment Analysis with IMDb Reviews
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RNN layer

We only keep the last 
time step’s output
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RNN layer

Each “layer” in orange 
dotted box corresponds 

to an iteration of the 
RNN's for loop & these 

layers share the same 
parameters!
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Sentiment Analysis with IMDb Reviews

[-0.57, 0.44]

[-0.26, 0.66]
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“this sucks”

RNNs work with variable-length inputs!

Note: Sometimes in text analysis, the word embeddings are treated as fixed, 
so we do not update them during training

C
la

ss
ifi

er

RNN layer

Each “layer” in orange 
dotted box corresponds 

to an iteration of the 
RNN's for loop & these 

layers share the same 
parameters!

Note that the “RNN layer” here could refer to a vanilla ReLU RNN 
or a more complicated RNN such as an “LSTM”, “GRU”, etc



What if we didn’t use word embeddings?



Word index Word 2D Embedding

0 this [-0.57, 0.44]

1 movie [0.38, 0.15]

2 rocks [-0.85, 0.70]

3 sucks [-0.26, 0.66]

Sentiment Analysis with IMDb Reviews

Training reviews

Step 1: Tokenize & build vocabulary

Step 2: Encode each review as a sequence of 
word indices into the vocab

Word index Word

0 this

1 movie

2 rocks

3 sucks

Step 3: Use word embeddings to represent each word

“this movie sucks”

[-0.57, 0.44] 
[0.38, 0.15] 
[-0.26, 0.66]

0 1 3



Word index Word One-hot encoding

0 this [1, 0, 0, 0]

1 movie [0, 1, 0, 0]

2 rocks [0, 0, 1, 0]

3 sucks [0, 0, 0, 1]

Bad Strategy: One-Hot Encoding

Training reviews

Step 1: Tokenize & build vocabulary

Step 2: Encode each review as a sequence of 
word indices into the vocab

Word index Word

0 this

1 movie

2 rocks

3 sucks

“this movie sucks”

[1, 0, 0, 0] 
[0, 1, 0, 0] 
[0, 0, 0, 1]

0 1 3

Step 3: Use one-hot encoding to represent each word

This strategy tends to work poorly in practice: 
distance between every pair of words is the same 

in one-hot encoding!



Recap/Important Reminder
• Neural nets are not doing magic; incorporating structure is very 

important to state-of-the-art deep learning systems

• Word embeddings encode semantic structure—words with 
similar meaning are mapped to nearby Euclidean points

• CNNs encode semantic structure for images—images that are 
“similar” are mapped to nearby Euclidean points

• An RNN tracks how what’s stored in memory changes over time — 
an RNN’s job is made easier if the memory is a semantically 
meaningful representation



A brief glimpse at word embeddings



“learn”

“study”

“car”

We used spaCy/CountVectorizer/ 
TfidfVectorizer

PCA 
(e.g., 100-dim)

Either TF 
or TF-IDF 

vector

Either TF 
or TF-IDF 

vector

Either TF 
or TF-IDF 

vector

100-dim 
PCA vector

100-dim 
PCA vector

100-dim 
PCA vector



“learn”

“study”

“car”

word embedding<latexit sha1_base64="/K2XKbqP78k6YM4sbcHgZptZAfU=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tDoNgFe5EooVFwMYygvmA5Ah7e3vJmr3dY3dOCCH/wcZCEVv/j53/xk1yhSY+GHi8N8PMvDAV3KDnfTuFtfWNza3idmlnd2//oHx41DIq05Q1qRJKd0JimOCSNZGjYJ1UM5KEgrXD0e3Mbz8xbbiSDzhOWZCQgeQxpwSt1OrRSKHplyte1ZvDXSV+TiqQo9Evf/UiRbOESaSCGNP1vRSDCdHIqWDTUi8zLCV0RAasa6kkCTPBZH7t1D2zSuTGStuS6M7V3xMTkhgzTkLbmRAcmmVvJv7ndTOMr4MJl2mGTNLFojgTLip39robcc0oirElhGpub3XpkGhC0QZUsiH4yy+vktZF1a9Va/eXlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4c1Rzovz7nwsWgtOPnMMf+B8/gCwG480</latexit>· · ·

<latexit sha1_base64="/K2XKbqP78k6YM4sbcHgZptZAfU=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tDoNgFe5EooVFwMYygvmA5Ah7e3vJmr3dY3dOCCH/wcZCEVv/j53/xk1yhSY+GHi8N8PMvDAV3KDnfTuFtfWNza3idmlnd2//oHx41DIq05Q1qRJKd0JimOCSNZGjYJ1UM5KEgrXD0e3Mbz8xbbiSDzhOWZCQgeQxpwSt1OrRSKHplyte1ZvDXSV+TiqQo9Evf/UiRbOESaSCGNP1vRSDCdHIqWDTUi8zLCV0RAasa6kkCTPBZH7t1D2zSuTGStuS6M7V3xMTkhgzTkLbmRAcmmVvJv7ndTOMr4MJl2mGTNLFojgTLip39robcc0oirElhGpub3XpkGhC0QZUsiH4yy+vktZF1a9Va/eXlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4c1Rzovz7nwsWgtOPnMMf+B8/gCwG480</latexit>· · ·

<latexit sha1_base64="/K2XKbqP78k6YM4sbcHgZptZAfU=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tDoNgFe5EooVFwMYygvmA5Ah7e3vJmr3dY3dOCCH/wcZCEVv/j53/xk1yhSY+GHi8N8PMvDAV3KDnfTuFtfWNza3idmlnd2//oHx41DIq05Q1qRJKd0JimOCSNZGjYJ1UM5KEgrXD0e3Mbz8xbbiSDzhOWZCQgeQxpwSt1OrRSKHplyte1ZvDXSV+TiqQo9Evf/UiRbOESaSCGNP1vRSDCdHIqWDTUi8zLCV0RAasa6kkCTPBZH7t1D2zSuTGStuS6M7V3xMTkhgzTkLbmRAcmmVvJv7ndTOMr4MJl2mGTNLFojgTLip39robcc0oirElhGpub3XpkGhC0QZUsiH4yy+vktZF1a9Va/eXlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4c1Rzovz7nwsWgtOPnMMf+B8/gCwG480</latexit>· · ·

Tokens/words

word embedding

word embedding

Neural net model



Word Embeddings: 
Even without labels, we can set up 

a prediction problem!

Hide part of training data and try to predict what you’ve hid!

This is commonly referred to as self-supervised learning

We're setting up a prediction task in an unsupervised setting!



Word Embeddings: word2vec (2013)

Can solve tasks like the following:

Man is to King as Woman is to Queen???



Word Embeddings: word2vec (2013)

Man is to King as Woman is to Queen

Can solve tasks like the following:



Word Embeddings: word2vec (2013)

Man is to King as Woman is to Queen

Which word doesn’t belong? 
blue, red, green, crimson, transparent

Can solve tasks like the following:



Word Embeddings: word2vec (2013)

Man is to King as Woman is to Queen

Which word doesn’t belong? 
blue, red, green, crimson, transparent

Can solve tasks like the following:



Word Embeddings: word2vec (2013)

Image source: https://deeplearning4j.org/img/countries_capitals.png



Word Embeddings: word2vec (2013)

The opioid epidemic or opioid crisis is the rapid increase in the use of 
prescription and non-prescription opioid drugs in the United States and 
Canada in the 2010s.

Predict context of each word!

Training data point:

“Training labels”:

epidemic

the, opioid, or, opioid



Word Embeddings: word2vec (2013)

The opioid epidemic or opioid crisis is the rapid increase in the use of 
prescription and non-prescription opioid drugs in the United States and 
Canada in the 2010s.

Predict context of each word!

Training data point: or

“Training labels”: opioid, epidemic, opioid, crisis



Word Embeddings: word2vec (2013)

The opioid epidemic or opioid crisis is the rapid increase in the use of 
prescription and non-prescription opioid drugs in the United States and 
Canada in the 2010s.

Predict context of each word!

Training data point: opioid

“Training labels”: epidemic, or, crisis, is

Also provide “negative” examples of words that are not likely to be context 
words (by randomly sampling words elsewhere in document)

These are “positive” (correct) 
examples of what context 

words are for “opioid”



Word Embeddings: word2vec (2013)

The opioid epidemic or opioid crisis is the rapid increase in the use of 
prescription and non-prescription opioid drugs in the United States and 
Canada in the 2010s.

Predict context of each word!

Training data point: opioid

“Negative training label”:      2010s

Also provide “negative” examples of words that are not likely to be context 
words (by randomly sampling words elsewhere in document)

randomly sampled word



Word2vec Neural Net

Linear 
(# nodes = vocab size), 

Softmax

Linear, no bias vector 
(100 nodes)

“opioid”

[0, 0, …, 1, …, 0]
Use one-hot encoding

vector length = vocab size

index of “opioid” in vocab

Want real context 
words (e.g., 
“epidemic”, “crisis”) 
to have high 
probability

Learned weight matrix used 
as word embedding!

(Treat i-th col of weight matrix as word embedding for i-th word)



Word2vec Neural Net

Linear, no bias vector 
(100 nodes)

“opioid”

[0, 0, …, 1, …, 0]
Use one-hot encoding

vector length = vocab size

index of “opioid” in vocab

Learned weight matrix used 
as word embedding!

(Treat i-th col of weight matrix as word embedding for i-th word)

After training the word2vec 
model, treat this layer as fixed!

In PyTorch, can store already 
trained word2vec model (and 

other similar models like GloVe) 
in the Embedding layer

Em
be

dd
in

g



“pen”

“cat”

“health”

Tokens/words

word embedding

word embedding

word embedding

word2vec

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g



“pen”

Tokens/words

word embedding

word2vec
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be
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Even though “pen” has multiple meanings 
(e.g., what you write with vs a play pen), 

word2vec would produce the same word embedding for “pen”



What about a word that has 
multiple meanings?

Challenging: try to split up word into 
multiple words depending on meaning 

(requires inferring meaning from context)

This problem is called word sense disambiguation (WSD)

(Flashback)



Modern Word Embeddings Use Context 

“I”

“write”

“using”

“a”

“pen”

word embedding

word embedding

word embedding

word embedding

word embedding

More complicated neural 
net (compared to 

applying Embedding 
separately to each word)

(such as BERT, which came out in 2018)

You provide a 
whole sentence 

(or a longer 
document)

Time-permitting, we’ll talk 
more about high level ideas 

of what happens in this 
neural net later this week



(Flashback) Sentiment Analysis with IMDb Reviews
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Each “layer” in orange 
dotted box corresponds 

to an iteration of the 
RNN's for loop & these 

layers share the same 
parameters!



What the Demo Will Actually Do
128-dim 

word 
embedding

0

1

3

“this movie sucks”
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LSTM

Each “layer” in orange 
dotted box corresponds 

to an iteration of the 
RNN's for loop & these 

layers share the same 
parameters!

BERT-Tiny

The original BERT base model from 
2018 is very large (110M parameters 

with 768-dim word embeddings)

We'll use Google's BERT-Tiny 
model (a version ported to 

Hugging Face)
32-dim 
vector



Word index Word 2D Embedding

0 this [-0.57, 0.44]

1 movie [0.38, 0.15]

2 rocks [-0.85, 0.70]

3 sucks [-0.26, 0.66]

Sentiment Analysis with IMDb Reviews

Training reviews

Step 1: Tokenize & build vocabulary

Step 2: Encode each review as a sequence of 
word indices into the vocab

Word index Word

0 this

1 movie

2 rocks

3 sucks

Step 3: Use word embeddings to represent each word

“this movie sucks”

[-0.57, 0.44] 
[0.38, 0.15] 
[-0.26, 0.66]

0 1 3

We do not store these embeddings and will instead compute them as needed 
(they depend on context anyways when using BERT/BERT-Tiny!)

In the demo, use the 
vocabulary from a pre-

trained BERT-Tiny

Token ID Token

Each token represented as a 128-dim BERT-Tiny 
word embedding

BERT/BERT-Tiny uses 
tokens that can be smaller 
than a word (specifically, 
unknown words get split 

into subwords)
token IDs

token



Variable-Length Time Series in PyTorch
In PyTorch, how do we specify a batch of time series of varying lengths?

Example: 5 data points (each one is a time series) of lengths 3, 2, 5, 1, 7

Common way: give a 2D table with all time series padded to the max length, 
and also give a 1D table specifying the lengths

Time steps

Data point

Blue entries contain actual 
values from the 5 time series

Gray entries contain 
padded values (e.g., zeros)

[3, 2, 5, 1, 7]

This shows up in the demo when 
we specify an example input to 

the neural net



Sentiment Analysis with IMDb Reviews Demo

The next series of slides provide a “cheatsheet” explaining 
what the sentiment analysis demo is doing

I will not go over the demo in detail in class and will expect you to read it fully 
(I will go over the cheatsheet with you)

The demo does not use a vanilla ReLU RNN and instead uses an LSTM
(you are not expected to know details of what’s under the hood for an LSTM)



Sentiment Analysis Demo Cheatsheet

1. Load in training data (25000 IMDb reviews)

2. Do a 80/20 split of the training data into: 
- proper training data (20000 reviews) 
- validation data (5000 reviews)

3. Convert each proper training review into token IDs using 
BERT-Tiny’s encode method

train_dataset

proper_train_dataset
val_dataset

list of length-2 tuples 
each containing 

(review, label 0 or 1)

"Master cinéaste Alain Resnais likes to work with those actors"

['master', 'ci', '##eas', '##te", 'alain', 'res', '##nais', 
'likes', 'to', 'work', 'with', 'those', 'actors']

[3040, 25022, 26737, 2618, 15654, 24501, 28020, 7777, 
 2000, 2147, 2007, 2216, 5889]

Important: we do not build a vocabulary from 
scratch since we just use BERT-Tiny's vocabulary!



proper_train_dataset_encoded list of length-2 tuples each containing 
(encoded review, label 0 or 1)val_dataset_encoded

Sentiment Analysis Demo Cheatsheet

1. Load in training data (25000 IMDb reviews)

2. Do a 80/20 split of the training data into: 
- proper training data (20000 reviews) 
- validation data (5000 reviews)

3. Convert each proper training review into token IDs using 
BERT-Tiny’s encode method

train_dataset

proper_train_dataset
val_dataset

list of length-2 tuples 
each containing 

(review, label 0 or 1)

"Master cinéaste Alain Resnais likes to work with those actors"

['master', 'ci', '##eas', '##te", 'alain', 'res', '##nais', 
'likes', 'to', 'work', 'with', 'those', 'actors']

[3040, 25022, 26737, 2618, 15654, 24501, 28020, 7777, 
 2000, 2147, 2007, 2216, 5889]

Important: we do not build a vocabulary from 
scratch since we just use BERT-Tiny's vocabulary!



Example: 5 data points (each one is a time series) of lengths 3, 2, 5, 1, 7

Time steps

Data point

Blue entries contain actual 
values from the 5 time series

Gray entries contain 
padded values (e.g., zeros)

4. Construct neural net (instead of nn.Sequential, we make a class 
that inherits from nn.module)

PyTorch convention: the forward function specifies how a neural net 
actually processes a batch of input data

The neural net we constructed has a 
forward function with two inputs: 
- a 2D table 
  (each column is for 1 data point) 
- a 1D table 
  (specifies length for each time series)

proper_train_dataset_encoded list of length-2 tuples each containing 
(encoded review, label 0 or 1)val_dataset_encoded



Data types matter in PyTorch (torch.long means these tables store integers)

Example: 5 data points (each one is a time series) of lengths 3, 2, 5, 1, 7

Time steps

Data point

Blue entries contain actual 
values from the 5 time series

Gray entries contain 
padded values (e.g., zeros)

actually processes a batch of input data

The neural net we constructed has a 
forward function with two inputs: 
- a 2D table 
  (each column is for 1 data point) 
- a 1D table 
  (specifies length for each time series)



5. Train the neural net for some user-specified max number of epochs

6. Automatically tune on one hyperparameter: 
choose # of epochs to be the one achieving highest validation accuracy

7. Load in the saved neural net from the best # of epochs

8. Finally load in test data, tokenize and convert each test review into 
a list of integers, and use the trained neural net to predict

Blue entries contain actual 
values from the 5 time series

Gray entries contain 
padded values (e.g., zeros)

Data types matter in PyTorch (torch.long means these tables store integers)



Two Demos

First demo (very short): How to use word embedding models from 
Hugging Face's transformers package

Second demo (long): sentiment analysis demo 
(again, please actually read it carefully including the comments after class)



Text generation as a 
prediction problem

Just like the word2vec prediction problem: 
we set up a self-supervised prediction problem



The opioid epidemic or opioid crisis is 
the rapid increase in the use of 
prescription and non-prescription opioid 
drugs in the United States and Canada in 
the 2010s.

Let’s treat this string as a single data point (a time series of tokens)

For tokenization, let’s split by individual characters 
(so no need to use spaCy)

Given ['T'], predict next character 'h'



The opioid epidemic or opioid crisis is 
the rapid increase in the use of 
prescription and non-prescription opioid 
drugs in the United States and Canada in 
the 2010s.

Let’s treat this string as a single data point (a time series of tokens)

For tokenization, let’s split by individual characters 
(so no need to use spaCy)

Given ['T'], predict next character 'h'

Given ['T', 'h'], predict next character 'e'
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(so no need to use spaCy)

Given ['T'], predict next character 'h'

Given ['T', 'h'], predict next character 'e'

Given ['T', 'h', 'e'], predict next character ' '
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The opioid epidemic or opioid crisis is 
the rapid increase in the use of 
prescription and non-prescription opioid 
drugs in the United States and Canada in 
the 2010s.

Let’s treat this string as a single data point (a time series of tokens)

For tokenization, let’s split by individual characters 
(so no need to use spaCy)

Given ['T'], predict next character 'h'

Given ['T', 'h'], predict next character 'e'

Given ['T', 'h', 'e'], predict next character ' '

Given ['T', 'h', 'e', ' '], predict next character 'o'

…

If the string has L + 1 characters total, then there are L such prediction tasks



How to solve this prediction task with an RNN

We will now keep track of outputs at every time step of the RNN

(Previously for sentiment analysis, we only kept the output at the final time step)



Vocabulary
First, let's agree on a vocabulary to use 
(e.g., pick the unique ones seen in the dataset)



RNN Language Model
'T' 'h' 'e' ' ' 'o' 'p'['T', 'h', 'e', ' ', 'o', 'p', 'i']

length = L + 1

L = 6 in this example
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RNN Language Model
'T'

'h'
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' '

'o'

'p'

encode as 
token ID
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RNN layer

Try to predict 'h'

Try to predict 'e'

Try to predict ' '

Try to predict 'o'

Try to predict 'p'

Try to predict 'i'
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Linear layer with softmax activation, 
# output nodes = vocab size


